
Download free eBooks at bookboon.com

SQL: A Comparative Survey

136

Constraints and Updating

6	 Constraints and Updating
6.1	 Introduction

As in the theory book, this chapter deals with database constraints, not to be confused with type
constraints (not supported in SQL) and SQL’s so-called domain constraints discussed in Chapter 2.

In Chapter 1, Example 1.3, you saw a simple example of a database constraint declaration expressed in SQL,
repeated here as Example 6.1 (though now referencing IS_ENROLLED_ON rather than ENROLMENT).

Example 6.1: Declaring an integrity constraint.

CREATE ASSERTION MAX_ENROLMENTS

CHECK ((SELECT COUNT(*) FROM IS_ENROLLED_ON) <= 20000) ;

CREATE ASSERTION is SQL’s counterpart of Tutorial D’s CONSTRAINT, but it is an optional
conformance feature that first appeared in SQL:1992 and very few SQL implementations (at the time of
writing in 2012) support it.

Without CREATE ASSERTION, one might attempt to implement the required constraint along the
lines of Example 6.1a.

Example 6.1a: Alternative formulation for MAX_ENROLMENTS

ALTER TABLE IS_ENROLLED_ON

ADD CONSTRAINT MAX_ENROLMENTS

CHECK ((SELECT COUNT(*) FROM IS_ENROLLED_ON) <= 20000) ;

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

137

Constraints and Updating

Explanation 6.1a

•	ALTER TABLE IS_ENROLLED_ON announces that an alteration to the definition of
base table IS_ENROLLED_ON is being specified.

•	ADD CONSTRAINT MAX_ENROLMENTS states that the alteration in question is the
addition of something SQL calls a table constraint, and its name is MAX_ENROLMENTS. A
table constraint is a condition that is required to be satisfied by every row appearing in the
base table for which that constraint is defined. Thus, in general, it is an open expression of
the kind that can appear as the condition of a WHERE clause. In this example the condition
is in fact a closed expression—it contains no reference to a column of IS_ENROLLED_
ON—and thus if it is satisfied by one row of that table, then it is satisfied by all of them.

•	 The last line is exactly as written in Example 6.1, but there’s a subtle difference in meaning.
Because a table constraint is one that must be satisfied by every row of the applicable
table, it is always satisfied when the applicable table is empty—there is no row for which
the constraint fails. In the case at hand, this is not a problem, because obviously, when
IS_ENROLLED_ON is empty, then its cardinality—zero—does not exceed 20,000. However,
suppose a constraint was required to the effect that IS_ENROLLED_ON must never be
empty. That could be achieved by changing <= 20000 to > 0 in Example 6.1, but the
same change to Example 6.1a would be ineffectual: when IS_ENROLLED_ON is empty,
it contains no row that fails to satisfy the constraint. That is why SQL is incomplete with
respect to database integrity when support for CREATE ASSERTION is absent.

Now, I wrote, “one might attempt to implement the required constraint” this way, suggesting that it might
not be such a good idea after all. Even though it does have the desired effect in the example at hand, the
fact that a table constraint is one that is required to be satisfied by each row in the relevant table means
that the DBMS is very likely to evaluate it for each row that is added to or updated in the table, whereas
of course it needs to be evaluated just once per update operation that affects IS_ENROLLED_ON.
This is why Tutorial D has no counterpart of SQL’s table constraints. They provide a useful shorthand
for certain special cases (like the NOT NULL constraint on a column, or a check for a column having
nonnegative values only, for example) but they give rise to traps when used inappropriately. A favourite
example is CHECK (EXISTS (SELECT * FROM t)), as a table constraint on table t. It
is satisfied even when t is empty!

Unfortunately (or fortunately?), Example 6.1a is in any case somewhat hypothetical, because the condition
contains a table expression—a subquery. The appearance of a subquery in a table constraint remains an
optional conformance feature and to this day many implementations fail to support it—and of those
that do support it, at least one that does so fails to enforce such constraints at all times.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

138

Constraints and Updating

One of my reviewers (Erwin Smout) showed me a possible workaround for use when the “no subqueries
in table constraints” restriction is in force. Example 6.1b applies this “hack” to Example 6.1a.

Example 6.1b: Workaround for when subqueries not permitted in CHECK constraints

CREATE FUNCTION NO_MORE_THAN_20000_ENROLMENTS()

RETURNS BOOLEAN ;

RETURN (SELECT COUNT(*) FROM IS_ENROLLED_ON) <= 20000 ;

ALTER TABLE IS_ENROLLED_ON

ADD CONSTRAINT MAX_ENROLMENTS

CHECK (NO_MORE_THAN_20000_ENROLMENTS()) ;

Caveat lector: You are strongly advised to complete Exercise 2 in this chapter’s Exercises section before
you commit to using this workaround in earnest.

“Not Enforced” Table Constraints

A constraint that is not enforced is not really a constraint within the meaning of the act, but SQL does
have such a concept and it needs to be mentioned here. With the exception of UNIQUE and PRIMARY
KEY specifications (see Section 6.4, the subsection headed Keys), a table constraint can be declared as
either ENFORCED (the default option) or NOT ENFORCED. The “enforcement characteristic” of such a
constraint can be changed by means of an ALTER TABLE statement. For example, the table constraint
MAX_ENROLMENTS becomes not enforced by execution of the statement ALTER TABLE ALTER
CONSTRAINT MAX_ENROLMENTS NOT ENFORCED. The immediate effect is the same (ignoring
effects on the catalog) as if ALTER TABLE DROP CONSTRAINT MAX_ENROLMENTS had been
given. However, it’s easier to reinstate the constraint using ALTER TABLE ALTER CONSTRAINT
MAX_ENROLMENTS ENFORCED than to repeat the whole of Example 6.1a.

NOT ENFORCED cannot be specified for domain constraints or assertions, so use of CREATE
ASSERTION should really be the preferred method of declaring a constraint, but unfortunately that
option is not widely available.

Historical Note and Comments

[NOT] ENFORCED first arrived in SQL:2007. It remains an optional conformance feature. At first
sight it seems to be rather a strange feature, but, assuming there is a genuine requirement for it, one could
observe that the effect of switching a table constraint between ENFORCED and NOT ENFORCED can
be obtained less conveniently by using ALTER TABLE/DROP CONSTRAINT and ALTER TABLE/
ADD CONSTRAINT.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

139

Constraints and Updating

One possible motivation for this feature lies in performance considerations. The feasibility of addressing
some integrity requirements decreases with database size and frequency of updates. Rather than leave
the database exposed permanently to the possibility of becoming inconsistent, one could declare a “not
enforced” constraint and switch it to being enforced at a convenient time. Of course, if the constraint
is then found to be violated, then some ad hoc intervention will be needed to address the problem.
This approach to maintaining integrity is clearly far from perfect but is perhaps better than nothing in
circumstances that offer no practical alternative.

All of that having been said, why the feature is not available with key constraints and constraints declared
by CREATE ASSERTION is a mystery to this writer.

It might seem that feature is restricted to constraints that have been explicitly named. However, the SQL
standard specifies that an implementation-dependent constraint name is given by default. In that case, the
unique name assigned by the system will show up in the catalog and could then be used in an ALTER
TABLE/ALTER CONSTRAINT or ALTER TABLE/DROP CONSTRAINT statement.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

SQL: A Comparative Survey

140

Constraints and Updating

6.2	 A Closer Look at Constraints and Consistency

Effects of NULL

Section 6.2 in the theory book starts with

A constraint is defined by a truth-valued expression, such as a comparison. A database constraint is defined
by a truth-valued expression that references the database. To be precise, the expression defines a condition
that must be satisfied by the database at all times.

and goes on to justify the use of the term satisfied. Unfortunately, SQL has two definitions of this term.
A row satisfies a condition in a WHERE clause only when the condition evaluates to TRUE, but it satisfies
a table constraint when the condition evaluates to either TRUE or UNKNOWN. Thus, SELECT * FROM
T WHERE c might yield an empty table even when c is the condition specified in some table constraint
for T and T itself is far from empty.

When Are Constraints Checked?

Under the model described in the theory book, constraints are conceptually checked at all statement
boundaries (and only at statement boundaries). By default the same is true of SQL. However, SQL does
not support the “multiple assignment” concept, described in the theory book, for database updates. For
that reason it has to include an alternative method of addressing the problems that multiple assignment
addresses. SQL does so by allowing the checking of specified constraints to be temporarily deferred and
reinstated later—but never across a transaction boundary. As a result, it is possible for the database to
appear to be inconsistent, but only to the user whose as yet uncommitted transaction has given rise to
that state of affairs.

As a consequence of deferred constraint checking, SQL code that depends on consistency with declared
constraints is obviously exposed to that assumption of consistency being false when the code is executed
while checking is deferred. For example, the table expression SELECT Name FROM IS_CALLED
WHERE StudentId = 'S1' might be expected never to result in a table containing more than one
row, thanks to the key constraint applying to IS_CALLED; thus it might be used in a scalar subquery.
However, if the checking of that key constraint is temporarily deferred and two or more rows with
StudentId equal to 'S1' temporarily appear in that table, then the scalar subquery will give rise to
a run-time exception. Fortunately, SQL does allow a constraint to be declared as NOT DEFERRABLE,
and that is the default option.

Historical Note

Deferred constraint checking first arrived in SQL:1992. It remains an optional conformance feature.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

141

Constraints and Updating

6.3	 Expressing Constraint Conditions

Use of Table Expressions

With the exception of key constraints, the examples in the theory book all explicitly reference at least
one relvar and thus involve invocations of relational operators or aggregate operators. Assuming support
for CREATE ASSERTION, we can always derive SQL counterparts of these examples using table
expressions and truth-valued operators, but when that assumption does not hold we need to look for
alternative solutions using table constraints. In most cases these will entail the use of subqueries and
even that technique is prohibited by many implementations. In some cases special syntactic constructs
are available, as we shall see, but there are several for which no SQL solution is available unless the
implementation supports CREATE ASSERTION or subqueries in table constraints.

Now, the reason usually given for lack of support for subqueries in constraints is that in general such
expressions can require the DBMS to examine the entire content of possibly very large tables. If database
updates are expected to occur frequently—and are perhaps required to occur very frequently indeed—
then declaration of such constraints would give rise to an intolerable slowing down of the updating
process. Of course this is an extremely valid concern and we have to admit that integrity might occasionally
have to be compromised for performance reasons, but consider the user with a small database that is
subject to comparatively infrequent updating but nevertheless has strong integrity requirements. Might
not such a user feel unfairly treated by a system that prohibits the declaration of required constraints?
Defenders of the status quo respond to this argument by holding that language constructs that can give
rise to disappointment for performance reasons, to such an extent as to militate against their use in
common practical situations, should be banned. But sometimes users resort to implementing constraints,
as best they can, in application code when they wish to enforce a constraint that is not supported by
the DBMS but nevertheless does not adversely impair performance. The DBMS could almost certainly
enforce such constraints much more efficiently and much more reliably. We can also point to various other
SQL constructs that might be subject to similar concerns but are supported nonetheless. For example,
if tables T1, T2, and T3 each contain 100,000 rows, then SELECT * FROM T1, T2, T3, when
evaluated, delivers a table containing a quadrillion rows.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

142

Constraints and Updating

Procedural Constraint Enforcement (Triggers)

SQL has an alternative method of addressing database integrity, involving event-driven procedural code.
The special procedures that can be used for this purpose are called triggers and the events that activate
them are specified update operations. For example, suppose it is required for every row in IS_CALLED
to have a matching row on StudentId in IS_ENROLLED_ON, enforcing a business rule to the effect
that every registered student must be enrolled on at least one course. Then a triggered procedure might
be activated every time INSERT is used to add a row to IS_CALLED, checking to see if a matching row
exists in IS_ENROLLED_ON and raising an exception if there isn’t one. But that wouldn’t be sufficient
to address the requirement. Further triggers would be needed, activated by UPDATE statements on
IS_CALLED and IS_ENROLLED_ON that cause changes to StudentId values in either of those
tables, and by DELETE statements on IS_ENROLLED_ON. As this simple example demonstrates, use of
triggered procedures for constraint enforcement can be complicated and error-prone. As one practitioner
told me, “It quickly gets so complicated that it’s almost impossible for a human not to make errors…,
and even when you’re not facing a ‘complicated’ case, the work to be done is tedious and boring”. The
subject is beyond the scope of this book but is dealt with at length and in meticulous detail by the
authors of reference [13].

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

SQL: A Comparative Survey

143

Constraints and Updating

Use of COUNT and NOT EXISTS

The theory book describes and discusses various general methods of expressing constraints, eventually
noting that support for “=” with relation operands is sufficient for completeness. It also notes that every
constraint can be expressed as an invocation of IS_EMPTY, where IS_EMPTY(r) is equivalent to r{ }
= TABLE_DUM. First, though, it gives Example 6.2, showing how to use COUNT to test a relation for
emptiness. Example 6.2 here is a direct translation of that one into SQL.

Example 6.2: Testing for absence of counterexamples.

CREATE ASSERTION Must_be_enrolled_to_take_exam

CHECK ((SELECT COUNT(*)

FROM	 EXAM_MARK

WHERE	 (Student_Id, CourseId) NOT IN

	(SELECT Student_Id, CourseId

	 FROM IS_ENROLLED_ON))

= 0) ;

Of course, counting all the rows is rather excessive when it is sufficient just to see if the table contains
anything at all. Examples 6.3 and 6.3a illustrate the use of NOT EXISTS, SQL’s counterpart of Tutorial D’s
IS_EMPTY operator. Example 6.3a shows how to express the constraint as a table constraint in case
CREATE ASSERTION is not available but the system does support subqueries in table constraints.
Notice how a table constraint avoids the need for the double negation that usually arises with tests for
emptiness—instead of checking for the non-existence of a row that fails to satisfy a given condition,
we give the inverse condition that every row must satisfy. For the sake of variety, Example 6.3 uses an
invocation of EXCEPT in place of Example 6.2’s use of NOT IN.

Example 6.3: Use of NOT EXISTS

CREATE ASSERTION Must_be_enrolled_to_take_exam_alternative1

CHECK (

NOT EXISTS (SELECT	 StudentId, CourseId

FROM	 EXAM_MARK

EXCEPT

SELECT	 StudentId, CourseId

FROM	 IS_ENROLLED_ON)) ;

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

144

Constraints and Updating

Example 6.3a: Alternative formulation as a table constraint

ALTER TABLE EXAM_MARK

ADD CONSTRAINT Must_be_enrolled_to_take_exam_alternative2

CHECK (EXISTS (SELECT StudentId, CourseId

	FROM	 IS_ENROLLED_ON

	WHERE	 StudentId	 = EXAM_MARK.StudentId

AND	 CourseId	 = EXAM_MARK.CourseId)

) ;

In Example 6.3a, note the use of the table name, EXAM_MARK, as a range variable to qualify references
to columns of that table. As always, the condition given as the operand of CHECK is one that would be
legal as a WHERE condition following a FROM clause specifying just the table to which the constraint
applies (viz., FROM EXAM_MARK in the case at hand).

Now, if the SQL implementation doesn’t allow subqueries to appear in table constraints and doesn’t
support CREATE ASSERTION, then none of the formulations in Examples 6.2, 6.3, and 6.3a will be
available. Happily, this particular constraint can be expressed as a foreign key constraint, as we shall see
later in Section 6.4, the subsection headed Foreign Keys.

Example 6.4 is a translation into SQL of the corresponding example in the theory book, which is included
there merely to show that for any scalar comparison there is an alternative formulation using IS_EMPTY.

Example 6.4: MAX_ENROLMENTS expressed using an invocation of NOT EXISTS

CREATE ASSERTION MAX_ENROLMENTS_alternative1

CHECK (NOT EXISTS (SELECT *

FROM (VALUES (SELECT COUNT(*)

FROM IS_ENROLLED_ON)) AS V(N)

WHERE V.N > 20000)) ;

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

145

Constraints and Updating

Explanation 6.4

•	VALUES (SELECT COUNT(*) FROM IS_ENROLLED_ON) denotes a table with
just one column, unnamed, in whose single row the value of that column is the number of
rows in the current value of IS_ENROLLED_ON. The SELECT expression is parenthesized
to make it into a scalar subquery and given as the argument to an invocation of VALUES,
which makes the number denoted by that scalar subquery into a one-row, one-column
table. (Actually, it might be safer to place an extra pair of parentheses around the SELECT
expression here. Although VALUES 1 and VALUES (1) are equivalent, it might not
be clear as to which role the single parentheses are taking: do they denote a scalar subquery,
as I have assumed, or are they the optional ones surrounding a single table expression? If
the latter, we would expect a syntax error.)

•	 AS V(N) defines the range variable V to refer to what in this case is just the single row of
that table, and also assigns the name N to its only column.

•	 WHERE V.N > 20000 operates on that one-row, one-column table to yield a table of
heading (N INTEGER) that is empty if and only if the single row in that one-row,
one-column table fails to satisfy the condition N > 20000. Thus, the result is empty only
when the number of enrolments is in fact no greater than the maximum allowed.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

SQL: A Comparative Survey

146

Constraints and Updating

Use of Table Comparisons

Table comparisons are described in Chapter 5, Section 5.9, where it is noted that although table expressions
cannot be compared, we have TABLE (t) to convert a table expression t into a value expression of
type ROW (r) MULTISET, where r is the row type of t. However, the only operator in SQL for
comparing two multisets is “=”, so SQL has no direct counterparts of the theory book’s Examples 6.5, 6.6,
and 6.7, which use “⊆”, and nor does this chapter. Those examples are shown merely to demonstrate that
every constraint that can be expressed as an invocation of IS_EMPTY can be formulated alternatively
as an invocation of “⊆”. If SQL were to have a counterpart of that operator, it would presumably have to
be an “is submultiset of ” operator, where m1 is a submultiset of m2 if and only if each element of m1
appears at least as many times in m2 as it does in m1. But SQL doesn’t have such an operator.

Effects of NULL

Here’s an important distinction between expressions denoting tables and expressions denoting multisets
of rows: a table expression cannot evaluate to NULL, whereas a multiset expression can. Moreover,
although a row expression can evaluate to NULL—for instance, CAST (NULL AS ROW (X
INTEGER, Y INTEGER)) is a legal expression—NULL cannot appear as an element of the body
of a table. Every element of the body of a table is indeed a row. However, if a table has a column whose
declared type is a row type, then NULL might appear in place of a value for that column in some row
of that table.

It follows from the foregoing discussion that although a multiset expression in general can evaluate to
NULL, an invocation of TABLE will never do so (recall that, counterintuitively, TABLE operates on a
table and returns a multiset of rows). Nor can NULL ever appear as an element of a multiset resulting
from an invocation of TABLE. However, the comparison TABLE (t1) = TABLE (t2),
where t1 and t2 are equal in cardinality, evaluates to UNKNOWN whenever NULL appears at any level
of nesting within either of t1 or t2.

Use of Truth-Valued Aggregate Operators

Example 6.8 in the theory book is an awkward one using double negation, offered as motivation for
the neater way of expressing such constraints subsequently shown in Example 6.9. Example 6.8 reads
as demanding that no exam mark shall not be in the required range, whereas Example 6.9 reads, more
naturally, as requiring that every mark shall be in that range. Here, the SQL translations illustrate SQL’s
BETWEEN and NOT BETWEEN shorthands for in-range tests.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

147

Constraints and Updating

Example 6.8: Restricting exam marks to between 0 and 100

CREATE ASSERTION Marks_between_0_and_100

CHECK (NOT EXISTS (SELECT *

FROM	 EXAM_MARK

WHERE	 Mark NOT BETWEEN 0 AND 100)) ;

As mentioned in Chapter 5, SQL has EVERY as its counterpart of Tutorial D’s aggregate operator AND.

Example 6.9: Restricting exam marks to between 0 and 100 using EVERY

CREATE ASSERTION Marks_between_0_and_100_using_EVERY

CHECK ((SELECT EVERY (Mark BETWEEN 0 AND 100)

FROM	 EXAM_MARK)) ;

x BETWEEN y AND z is equivalent to x >= y AND x <= z.

It follows from Example 6.9 that if the SQL standard’s CREATE ASSERTION and type BOOLEAN are
both supported, then use of EVERY provides an alternative method of testing a table for being empty. If
tx is a table expression, then we have the scalar subquery (SELECT EVERY(FALSE) FROM (tx)
AS T). When the result of tx contains a row, that row clearly fails to satisfy the condition FALSE and
so the result of the scalar subquery is FALSE; otherwise the table is empty and the result is UNKNOWN,
in which case the constraint is deemed to be satisfied, as previously explained. The reason why the result
is UNKNOWN instead of what it should correctly be, viz. TRUE, is explained in Effects of NULL.

Effects of NULL

Let aggop(x) be an invocation of some aggregate operator aggop in SQL, where x is an expression (usually
an open expression) to be evaluated against each row of the table t determined by the context in which the
invocation appears. Then aggop considers only those rows that satisfy the condition x IS NOT NULL.
It follows that if aggop is EVERY or SOME and x evaluates to TRUE or FALSE for at least one row of t,
then the result is either TRUE or FALSE, never UNKNOWN. However, if x evaluates to UNKNOWN for every
row of t (which is true in the particular case when t is empty), then SQL’s other general rule kicks in,
requiring the result to be NULL, which is equivalent to UNKNOWN when it appears in the place of a BOOLEAN
value. That anomaly is to some extent compensated for, when EVERY is used in constraint declarations, by
SQL’s rule that a constraint is deemed to be satisfied when it evaluates to UNKNOWN. However, (SELECT
SOME(TRUE) FROM (tx) AS T) is not reliable as an existence test because it evaluates to UNKNOWN
if the result of tx is empty, when a constraint based on that condition would be deemed satisfied. That
problem could be addressed by writing COALESCE((SELECT SOME(TRUE) FROM (tx) AS T),
FALSE) or, equivalently, (SELECT SOME(TRUE) FROM (tx) AS T) IS TRUE (see Chapter 3,
Section 3.5 Deriving Predicates from Predicates, Figure 3.1a in the subsection headed Other monadics).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

148

Constraints and Updating

6.4	 Useful Shorthands for Expressing Some Constraints

Section 6.4 in the theory book describes three special classes of constraint and shorthands that have
been proposed for them, not all of which have been adopted in Tutorial D. The three special classes
are tuple constraints, key constraints, and foreign key constraints. SQL has counterparts of all three, as
different kinds of table constraints.

CHECK Constraints

A CHECK constraint is a table constraint defined using the key word CHECK, as already illustrated in
several examples in this chapter. In particular, a CHECK constraint can be used to express a constraint
such as the one shown in Example 6.10, referred to in the theory book as a tuple constraint (so one might
call it a row constraint in SQL). This is clearly the way most SQL users would prefer to express such a
constraint—in fact, it is the only way when Examples 6.8 and 6.9 are unavailable for want of support
for subqueries in constraints.

Example 6.10: Shorthand for a row constraint

ALTER TABLE EXAM_MARK

ADD CONSTRAINT Mark_in_range

CHECK (Mark BETWEEN 0 AND 100) ;

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

SQL: A Comparative Survey

149

Constraints and Updating

Actually, it’s not quite the only way. The constraint can be included in the column definition for Mark
in the CREATE TABLE statement for EXAM_MARK, as shown in Example 6.10a. A constraint declared
as part of a column definition is called a column constraint.

Example 6.10a: Column constraints included in a column definition

Mark INTEGER NOT NULL CHECK (Mark BETWEEN 0 AND 100),

Example 6.10a has two separately declared column constraints in the same column definition. Both
are unnamed but could be named if desired. Constraints that are declared without names acquire
implementation-dependent names that show up in the database catalog. As in Tutorial D, naming a
constraint allows it to be dropped when no longer needed (SQL uses the same key word, DROP).

The first column constraint, NOT NULL, is short for CHECK (Mark IS NOT NULL). One might
conclude that BETWEEN 0 AND 100 would be allowed as short for CHECK (Mark BETWEEN
0 AND 100), but that would be a wrong conclusion. One might also wonder if CHECK (Mark
BETWEEN 0 AND 100) could be included (perversely) in the definition of some column other than
Mark. In fact it can. Moreover, a column constraint can reference other columns in the same table, in
which case the choice as to which column definition to include it in becomes arbitrary and one might
prefer to write it as a regular table constraint (at the expense of an extra key word and a comma).

Effect of NULL

Until SQL:1999, if a column was subject to a NOT NULL constraint, then every value v appearing in
that column could be guaranteed to compare equal with itself and not equal to every value of its type
other than itself. That guarantee does not hold with all the additional types that were added to SQL
in SQL:1999. For example, if a column is defined on type ROW (x INTEGER, y INTEGER),
then a NOT NULL constraint will not prevent the value ROW (CAST (NULL AS INTEGER),
42) appearing in that column. A similar comment applies to user-defined structured types, where
the value of a component of the structure being NULL does not confer “nullness”, so to speak, on the
whole value (see Chapter 2, Section 2.10, Types and Representations, the subsection Effect of NULL).

Keys

We have already seen one way of declaring a key in SQL, in CREATE TABLE statements. For example,
the one for EXAM_MARK in the introduction to Chapter 5 includes the table constraint PRIMARY KEY
(StudentId, CourseId). This is almost equivalent to Tutorial D’s KEY { StudentId,
CourseId }, the exceptions being: (a) there is some significance to the order in which the column
names are written, as explained in the following section on foreign keys, and (b), as the key words
PRIMARY KEY suggest, no more than one primary key can be specified for the same base table.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

150

Constraints and Updating

A PRIMARY KEY specification carries an implicit NOT NULL constraint on each column of the specified
key. When more than one key constraint is required, the key word UNIQUE must be used in place of
PRIMARY KEY for all or all but one of them. A UNIQUE specification does not carry an implicit NOT
NULL constraint on each column of the specified key (says the SQL standard, though I am aware of at
least one SQL implementation where it does).

Whether declared using PRIMARY KEY or UNIQUE, at least one column must be specified. SQL has
no direct counterpart of Tutorial D’s KEY { }.

When a key consists of just one column it may be expressed in shorthand as a column constraint. For
example, in the CREATE TABLE statement for COURSE, the primary key could be specified by adding
PRIMARY KEY to the column definition for CourseId.

SQL differs from Tutorial D in its support for keys in the following respects:

•	 SQL does not require at least one key for every base table. In Tutorial D, if no key is
explicitly declared, then KEY { ALL BUT } is implicit.

•	 When no key is specified there is no prohibition on multiple appearances of the same row.

•	 SQL does not recognize the empty set as a key.

•	 SQL allows a key to be a proper superset of another key for the same base table. (This
“feature” is sometimes used as a workaround for the fact that the columns of the foreign key
are required to correspond to those of a declared key of the referenced table.)

Effects of NULL

When a UNIQUE specification u for base table t includes a column c that is not subject to a NOT NULL
constraint, the appearance of several rows having NULL in place of a value for c and equal values for
the other columns specified in u is permitted. It is only when each column of the specified “key” has
a value that those column values may not appear in the same combination in more than one row of t.

WHEN/THEN Key Constraints

Temporal databases are beyond the scope of the theory book, but the problems that arise with them
and proposed solutions to those problems are described in detail in reference [12], which presents its
proposals as notional extensions to Tutorial D. One of these extensions is a special shorthand called a
WHEN/THEN constraint, and SQL has a somewhat similar solution to the particular problem addressed
by such constraints (though it falls far short of addressing all of the problems described in reference [12]).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

151

Constraints and Updating

Suppose a table has two columns representing a period of time throughout which the information
conveyed by the other columns is recorded as having been the case. A salary history table for employees,
with columns From and To for dates defining the applicable time periods, would be a good example. A
constraint is needed to avoid the possibility of an employee being shown as having two different salaries
on the same day, which could happen if two rows for the same employee have overlapping periods
indicated by their From and To dates. The term “WHEN/THEN constraint” appeals to the notion of
“unpacking” the table so that each row is replaced by one or more rows, one for each date contained
in its from-to period: when the relation is unpacked, then the given key constraint (e.g., on employee
number and date) is to hold.

Here’s a concrete example showing how SQL supports WHEN/THEN constraints.

CREATE TABLE SAL_HISTORY (EmpNo CHAR(6),

Salary INTEGER NOT NULL,

From DATE

To DATE

PERIOD FOR During (From, To),

PRIMARY KEY (EmpNo, During WITHOUT OVERLAPS)

) ;

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

SQL: A Comparative Survey

152

Constraints and Updating

The PERIOD FOR specification states that the From and To values in each row denote a time interval
(called a period because SQL uses the term “interval” for something else). The From values are treated
as closed bounds, the To values as open bounds, so a given row in SAL_HISTORY indicates that an
employee was paid a certain salary from the given From date up to but not including the given To date.
The specification implies the column constraint NOT NULL NOT DEFERRABLE ENFORCED for
each of columns From and To.

During WITHOUT OVERLAPS, which, if required, must appear as the last element of the key, specifies
that if the same EmpNo value appears in two distinct rows of SAL_HISTORY, then the From and To
values in those rows must denote During periods that do not overlap (have no date in common).

Historical Notes and Comments

Support for keys (and foreign keys) arrived in 1989, as part of an addendum to SQL:1987, the first
international edition of the SQL standard.

PERIOD FOR and WITHOUT OVERLAPS arrived as an optional conformance feature in SQL:2011. Note
that although the WITHOUT OVERLAPS specification in SAL_HISTORY prevents an employee from
being recorded as having two or more different salaries on the same day, it does not enforce the “packed
form” defined in reference [12]. In the given example, packed form would prevent the appearance of two
or more rows with consecutive From-To periods showing the same salary for the same employee—a
case of what reference [12] calls circumlocution. Clearly, two such rows can be replaced by a single row
having the From value of the earlier period and the To value of the later one.

A question arises as to what happens if one of those implied NOT NULL constraints is dropped or altered
to be NOT ENFORCED (the historical note in Section 6.1 shows how this might be done in accordance
with the SQL standard). SQL:2011 is silent on that possibility.

Foreign Keys

(See the corresponding section in the theory book for the meaning of this term.)

Examples 6.2, 6.3, and 6.3a are alternative ways of formulating a constraint that enforces a business
rule to the effect that every student who takes an exam must be enrolled on the applicable course. As
it happens, that constraint can also be formulated as a foreign key, expressed as a table constraint for
base table EXAM_MARK.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

153

Constraints and Updating

Example 6.3b: Alternative formulation for 6.3 as a foreign key constraint

ALTER TABLE EXAM_MARK

ADD CONSTRAINT Must_be_enrolled_to_take_exam_alternative3

FOREIGN KEY (StudentId, CourseId)

REFERENCES IS_ENROLLED_ON ;

The formulation in Example 6.3b is available only because the following conditions hold:

1.	 There is a one-to-one correspondence from the specified columns, in the specified order,
to those of the primary key of IS_ENROLLED_ON. Corresponding columns do not have
to have the same name but they must be of the same declared type. The table name for the
referenced table (IS_ENROLLED_ON in the example) can be followed by a commalist of
column names in parentheses, in which case that commalist—the referenced columns—must
correspond exactly, in the correct order, to some key specified for the referenced table. The
referenced columns must be explicitly specified when the applicable key is declared using
UNIQUE rather than PRIMARY KEY, or when it is declared using WITHOUT OVERLAPS.

2.	 The referenced table and the referencing table (EXAM_MARK in the example) are both
base tables.

A foreign key declaration in SQL can include a specification of a compensatory action, which defines
an additional update to take place automatically when the constraint would otherwise be violated.
For example, the specification ON DELETE CASCADE, when added to the foreign key declaration
in Example 6.3b, states that when a row is deleted from the referenced table, IS_ENROLLED_ON, all
matching rows in EXAM_MARK are to be deleted too. Similarly, ON UPDATE CASCADE specifies that
when the StudentId or CourseId value of some row in IS_ENROLLED_ON is updated, the new
value is propagated to all of the matching rows in EXAM_MARK. For another example, ON DELETE
SET DEFAULT specifies that when a row in IS_ENROLLED_ON is deleted, the values for columns
StudentId and CourseId in the matching rows of EXAM_MARK are replaced by the default values
for those columns—in which case those default values must be sure to be matched by some row in the
referenced table, of course.

A compensatory action, being a further update of some kind, might in turn result in violation of a
foreign key constraint that might in turn have a compensatory action defined for it. The interactions
between compensatory actions and triggered procedures are fully specified in the SQL standard but can
be bewilderingly complicated.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

154

Constraints and Updating

When no compensatory action is required, SQL has two ways of dealing with foreign key constraint
violations and allows the user to choose between the two. The two options are NO ACTION and
RESTRICT. ON DELETE NO ACTION and ON UPDATE NO ACTION are self-explanatory: a
constraint violation is to cause the delete or update to be rejected. But RESTRICT, rather than NO
ACTION is the default option. ON DELETE RESTRICT and ON UPDATE RESTRICT can cause
a delete or update to be rejected even before the overall effect of the statement has been evaluated and
even when the overall effect would be accepted under NO ACTION. For example, suppose the table T
is subject to the constraint

FOREIGN KEY (FK) REFERENCES T(K) ON UPDATE RESTRICT

and the following statement is executed:

UPDATE T SET K = K + 1 ;

If T has a row with 3 for column K and one or more rows with 3 for FK, the update is rejected even if T
also has a row with 2 for K that will satisfy the foreign key constraint when 3 replaces 2. ON UPDATE
NO ACTION had been specified instead, the updated would be accepted because the overall effect would
not cause a constraint violation—the constraint is properly checked at the statement boundary instead
of being checked against some intermediate state that arises mid-execution.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

SQL: A Comparative Survey

155

Constraints and Updating

If the applicable key of the referenced table is defined using a period name and WITHOUT OVERLAPS,
then the definition of the referencing table must include a period name pn defined on columns compatible
with the corresponding ones of the referenced table, and the foreign key declaration must include PERIOD
pn. The foreign key constraint is then considered to apply to the unpacked forms of the referencing and
referenced tables, and the ON DELETE/ON UPDATE options are not supported—RESTRICT is implicit.

6.5	 Updating Tables

Section 6.5 in the theory book is headed Updating Relvars. I could perhaps have used the heading
Updating Table Variables here but such terminology is not used in SQL. Nevertheless, of course it is table
variables—base tables or updatable views—that are updated, not tables per se. As the theory book does
not cover the difficult and somewhat controversial topic of updating virtual relvars (as views are called in
that book), this book likewise considers only base tables as targets. Also omitted, as in the theory book,
is any discussion of SQL’s comprehensive provisions for security and authorization, giving control over
(among many other things) which users are authorized to do what kinds of updating to which tables.

The theory book introduces the topic of updating by describing the assignment operator, “:=” in
Tutorial D. SQL uses a different syntax for assignment, using the key word SET and “=”. Thus, to add
1, so to speak, to the integer variable x, SQL has SET x = x + 1. However, the operator is not
supported at all for tables, so SQL has no direct counterpart of the theory book’s Example 6.11. It does,
however, have counterparts of Tutorial D’s INSERT, UPDATE, and DELETE operators, which we can
deal with here quite briefly by giving translations to SQL of the theory book’s examples 6.12, 6.13, 6.14,
and 6.16. (Example 6.15 is missing because that one uses “:=”.)

INSERT

Loosely speaking, INSERT takes the rows of a given source table and adds them to the specified target
table, retaining all the existing rows in the target. Example 6.12 shows how INSERT can be used to add
a single row to IS_ENROLLED_ON.

Example 6.12: Enrolling a student on a course using INSERT

INSERT INTO IS_ENROLLED_ON VALUES ('S3', 'C2') ;

Recall that VALUES ('S3', 'C2') denotes the table consisting of just the row ('S3', 'C2').
If that row already exists in the target table, then the update has the effect of increasing the number
of appearances of that row by one, unless some key is specified for that table (as is the case with IS_
ENROLLED_ON), in which case the update fails.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

156

Constraints and Updating

Recall also that the columns of the result of a VALUES expression are effectively unnamed, so the
column ordering has to be used to determine the correspondence between source and target columns.
In Example 6.12, 'S3' becomes the StudentId value in the inserted row and 'C2' becomes the
CourseId value, and that’s because StudentId is defined to be the first column of IS_ENROLLED_
ON, CourseId the second. However, the defined ordering can be explicitly overridden, as shown in
Example 6.12a.

Example 6.12a: Overriding the defined column ordering

INSERT INTO IS_ENROLLED_ON (CourseId, StudentId)

	 VALUES ('C2', 'S3') ;

A VALUES expression is not restricted to tables of just one row. For example, the source table VALUES
('S3', 'C2'), ('S4', 'C1') would simultaneously enroll student S3 on course C2 and S4
on C1. In general, any table expression can be used as the source table for an INSERT invocation, just
as any relational expression can be used for the same purpose in Tutorial D.

Example 6.13, like its counterpart in the theory book, illustrates the convenience of allowing any table
expression to be the source for an INSERT. It assumes that all the exam scripts submitted by students
have been marked and it has been decided to record marks of zero for students who failed to turn up
for an exam they should have sat. (Remember that SQL’s EXCEPT requires its operands to be of the
same degree, unlike Tutorial D’s NOT MATCHING—hence the third element, 0, of the second operand
in the example.)

Example 6.13: Awarding zero marks to students who failed to take the exam

INSERT INTO EXAM_MARK

SELECT	 StudentId, CourseId, 0

FROM	 IS_ENROLLED_ON

EXCEPT

SELECT	 StudentId, CourseId, 0

FROM	 EXAM_MARK ;

UPDATE

Loosely speaking, UPDATE changes some of the column values of some existing rows of its target table.
Thus, although some rows disappear from the target and others arrive in it, so to speak, the cardinality
of the table does not change. Suppose the exam board for course C2 decides that the exam has been
marked too harshly and everybody’s mark is to be increased by 5. Example 6.14 shows how.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

157

Constraints and Updating

Example 6.14: Adding 5 to all the marks for course C2

UPDATE EXAM_MARK SET Mark = Mark + 5

WHERE CourseId = 'C2' ;

The syntax is self-explanatory. The WHERE specification is optional and defaults to WHERE TRUE,
meaning that the specified changes are to be applied to all existing rows in the target table. The expression
Mark = Mark + 5 is a column assignment. When several column assignments are needed they are
separated by commas and the semantics of multiple assignment as described in the theory book apply:
the right-hand sides are all evaluated before any column assignments are performed. The same column
cannot be the target or more than one assignment.

SQL’s UPDATE differs from Tutorial D’s in the following interesting respect. Let relvar rv be assigned
the relation RELATION { TUPLE { X 1, Y 2}, TUPLE (X 2, Y 2 } }. Then UPDATE
rv WHERE X = 1 (X := 2) causes rv to consist of just a single tuple, TUPLE { X 2, Y
2}. The SQL counterpart, assuming no constraint violation would arise, causes the target table to contain
two appearances of the row ROW (2, 2).

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

SQL: A Comparative Survey

158

Constraints and Updating

If the target table has a period name defined on two of its columns, then an UPDATE statement for
that table can include a FOR PORTION OF clause, specifying a FROM and a TO value. In this case
the cardinality of the target table can change. For example, if the SAL_HISTORY table contains the
following rows:

('123456', 55000, DATE('2011-09-01'), DATE('2012-08-01')),

('123456', 60000, DATE('2012-08-01'), DATE('9999-12-31'))

and it is discovered that employee 123456’s salary was in fact increased to 60000 on July 1st, 2012, then
Example 6.14a can be used to make the necessary correction. As a result, those two rows will be replaced
by the following three:

('123456', 55000, DATE('2011-09-01'), DATE('2012-07-01')),

('123456', 60000, DATE('2012-07-01'), DATE('2012-08-01')),

('123456', 60000, DATE('2012-08-01'), DATE('9999-12-31'))

Note that the second and third exhibit circumlocution: using more than one row to state what could
equivalently be stated by a single row showing that employee 123456’s salary is 60000 from July 1st,
2012 until SQL’s rather pessimistic estimate of the end of time (this being what is sometimes used to
indicate “indefinitely”).

Example 6.14a: Updating a “portion” of the salary history table

UPDATE SAL_HISTORY

FOR PORTION OF During

FROM DATE('2012-07-01') TO DATE('2012-08-01')

SET (Salary = 60000)

WHERE EmpNo = '123456' ;

DELETE

Loosely speaking, DELETE removes some existing rows from its target table. Suppose the university
decides that course C3 is to be withdrawn. Example 6.16 shows how.

Example 6.16: Withdrawing course C3, using DELETE

DELETE FROM COURSE WHERE CourseId = 'C3' ;

Every row that satisfies the given WHERE condition is deleted; rows that do not satisfy it remain in place.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

159

Constraints and Updating

As with UPDATE, a FOR PORTION OF clause can be specified if the target table has a defined period
name, as illustrated in Example 6.16a.

Example 6.16a: Deleting a “portion” of the salary history table

DELETE SAL_HISTORY

FOR PORTION OF During

FROM DATE('2012-01-01') TO DATE('2012-02-01')

WHERE EmpNo = '123456' ;

As a result, the row

('123456', 55000, DATE('2011-09-01'), DATE('2012-08-01'))

is replaced by the two rows

('123456', 55000, DATE('2011-09-01'), DATE('2012-01-01')),

('123456', 55000, DATE('2012-02-01'), DATE('2012-08-01'))

and the DELETE statement will have effected an increase in cardinality instead of the usual decrease.

MERGE and TRUNCATE

SQL has two more table update operators, MERGE and TRUNCATE.

MERGE, like INSERT, takes a source table s and uses it to update a target table t. Briefly, a MERGE statement
specifies a matching condition to determine which rows of s have at least one matching row in t (under that
specified matching condition). It then specifies an open-ended series of conditions to be applied to each
row of s paired with actions to be applied on t. WHEN MATCHED AND c1 THEN x1 specifies that
action x1, necessarily an UPDATE or DELETE, is to be applied on t for each matching row in s that satisfies
the condition c1. WHEN NOT MATCHED AND c2 THEN x2 specifies that action x2, necessarily an
INSERT, is to be applied on t for each non-matching row in s that satisfies the condition c2.

The curiously named TRUNCATE statement deletes all the rows from its specified target, bypassing any
triggered actions, including compensatory actions, specified for that target. The target must be a base table.

Multiple Assignment

SQL supports multiple assignment to local variables and also applies multiple assignment semantics in
SET clauses of UPDATE statements, but does not support multiple assignment in connection with updates
on table targets. Thus, SQL has no counterpart to the theory book’s Example 6.17, simultaneously deleting
from both COURSE and IS_ENROLLED_ON. If we assume that there must be at least one enrolment
for each course, and that students can enroll only on existing courses, deferred constraint checking has
to be used, as shown in Example 6.17 here.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

160

Constraints and Updating

Example 6.17: Withdrawing course C3 and deleting any enrolments on C3

Assume the definition of IS_ENROLLED_ON includes
CONSTRAINT Course_must_exist_for_enrolment
FOREIGN KEY (CourseId) REFERENCES COURSE ON DELETE NO ACTION

and the definition of COURSE includes
CONSTRAINT Enrolment_must_exist_for_course
CHECK (CourseId IN (SELECT CourseId FROM IS_ENROLLED_ON)

Then the desired effect can be achieved by this:
SET CONSTRAINTS Course_must_exist_for_enrolment DEFERRED ;

DELETE FROM COURSE WHERE CourseId = 'C3' ;

DELETE FROM IS_ENROLLED_ON WHERE CourseId = 'C3' ;

SET CONSTRAINTS Course_must_exist_for_enrolment IMMEDIATE ;

ON DELETE NO ACTION states that no compensatory action is to be used for enforcement of the
foreign key constraint. Deferring the checking of that constraint allows the first DELETE statement to
succeed in spite of the consequent existence of “orphan” rows in IS_ENROLLED_ON. Cancelling the
deferment immediately after the second delete then causes the constraint to be checked. If the DELETE
statements were the other way around, then we would have to defer Enrolment_must_exist_
for_course instead.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

SQL: A Comparative Survey

161

Constraints and Updating

In Example 6.18, a straight translation of its counterpart in the theory book, the second statement,
assigning to both X and Y, illustrates multiple assignment to local variables in SQL.

Example 6.18: A consequence of simultaneity

SET X = 1;

SET (X, Y) = ROW (X + 1, X + 1);

As in Tutorial D, the value 2 is assigned to both X and Y. The simultaneous assignment to X and Y can
also be expressed using a SELECT … INTO statement, as shown in Example 6.18a. An INTO clause can
be used only in the first SELECT clause of such a statement and only when the resulting table contains
no more than one row. (When a SELECT expression contains further SELECT expressions, the first
SELECT clause is the one belonging to the outermost SELECT expression. The outermost SELECT
expression cannot be combined with another by UNION, EXCEPT, or INTERSECT.)

Example 6.18a: Multiple assignment using SELECT … INTO

SELECT * INTO X, Y

FROM VALUES (X + 1, X + 1) AS T;

The key word ROW in Example 6.18 is optional. That being the case, you might ponder the distinctions
among the statements listed in Example 6.18b. Which ones assign 1 to X and which assign ROW (1)?
Is (b) legal if the declared type of X is ROW (F1 INTEGER). Is (e) legal if the declared type of X
is INTEGER?

Example 6.18b: Some puzzling syntactic variations

a)	 SET (X) = (1);
b)	 SET X = 1;
c)	 SET (X) = 1
d)	 SET (X) = ((1));
e)	 SET X = (1);

Effects of NULL

If the row expression given as the source for a multiple assignment evaluates to NULL, then NULL is
assigned to each target.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

162

Constraints and Updating

If a SELECT … INTO statement results in an empty table, then the target variables are not updated and
a completion condition is given to indicate that. This is not exactly an “effect of NULL”, of course, but I
mention it here because of the contrast with a row subquery, which delivers a single row with NULL for
each field when its table expression evaluates to an empty table. This observation might influence the
choice between SET and SELECT … INTO.

Historical Notes

INSERT, UPDATE, and DELETE have been in SQL from the beginning. MERGE was added in SQL:2003,
TRUNCATE in SQL:2007.

Support for local variables and various programming language constructs is defined in Part 4 of the SQL
standard, referred to as SQL/PSM. Part 4 first appeared in 1996, as an addendum to SQL:1992.

Support for multiple assignment to local variables was added in SQL:2003. SELECT … INTO has
been in SQL from the beginning, though until 1996 it was available only with “host” variables as targets,
a host variable being one declared using some language other than SQL in a program written in that
language. References to host variables are distinguished from references to SQL variables by prefixing
them with colons (e.g., :X).

Transactions

For Tutorial D’s BEGIN TRANSACTION, COMMIT, and ROLLBACK, SQL has the same syntax except
for START in place of BEGIN. However, START TRANSACTION is used only for outermost transactions
and cannot be given when a transaction has been started and not completed. Inner transactions are started
using a SAVEPOINT statement, giving a name—a savepoint name—that identifies the database state at
the time of execution. If SAVEPOINT SN1 has been given, for example, then RELEASE SAVEPOINT
SN1 has the same effect as a Tutorial D COMMIT for all updates performed since savepoint SN1 was
established—it merely relinquishes the possibility of cancelling just those updates and does not make
their effects visible to other users. To cancel those updates ROLLBACK TO SAVEPOINT SN1 is given,
but then the savepoint name SN1 remains in existence. In both cases, any further existing savepoints,
established after SN1, are destroyed.

If an attempt is made to update the database when no transaction has been explicitly started, then
a transaction is implicitly started. When no transaction has been started, a SET TRANSACTION
statement can be given to specify various options to override the defaults that otherwise apply to the
next transaction. The options can alternatively be specified in a START TRANSACTION statement.
The options in effect will apply when a transaction is implicitly started or when it is started by a START
TRANSACTION statement that does not override them.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

163

Constraints and Updating

One of the options for SET/START TRANSACTION is the so-called isolation level, which applies to
the whole of the outermost transaction. The default isolation level is SERIALIZABLE, this being the
only one that enforces all of the normally defined properties of transactions. The weakest level, READ
UNCOMMITTED allows other concurrent users to see the effects of updates that have not yet been
committed (and might never be, of course). Intermediate levels, READ COMMITTED and REPEATABLE
READ, as well as UNCOMMITTED, allow a transaction to perceive changes to the database that have been
effected by other, committed transactions (for example, by evaluating the same table expression more
than once, without updating the database betweentimes, and getting different results).

Historical Notes

SET TRANSACTION appeared in SQL:1992. START TRANSACTION and SAVEPOINT were added
in SQL:1999.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

SQL: A Comparative Survey

164

Constraints and Updating

EXERCISES

1. SQL does not allow the empty set to be specified using PRIMARY KEY or UNIQUE. Write a table
constraint that could be included in the definition of table T to simulate Tutorial D’s KEY { }. Mention
any optional conformance features of SQL that your solution uses.

2. Using some SQL implementation that is available to you, try out Example 6.1b on it, using a low
number, say 1, in place of 20000. Is it accepted? If so, does it have the intended effect? If not, is it accepted
when you place BEGIN and END around the RETURN statement? If it’s still not accepted, try RETURNS
INTEGER instead of RETURNS BOOLEAN, and move the comparison from the function body to
the constraint. Now is it accepted? And if so, does it have the desired effect? Finally, try specifying a
different base table, say IS_CALLED, in the ALTER TABLE statement (and drop the constraint from
IS_ENROLLED_ON). When IS_CALLED is nonempty and IS_ENROLLED_ON is at its maximum
cardinality, is INSERT INTO IS_ENROLLED_ON … accepted? Or does the DBMS check the constraint
only on updates to IS_CALLED?

3. Suppose the table definition for COURSE is extended to include a column MaxExamMark, whose value
in each row is the maximum mark obtainable for that course’s exam. {StudentId, CourseId} is
a foreign key in EXAM_MARK, referencing IS_ENROLLED_ON. A constraint is needed to ensure that
no student is awarded a mark greater than the relevant maximum.

a)	 Write an SQL ALTER TABLE statement to address this requirement.

b)	 Complete the following statement to make it equivalent to your solution for part (a):

CREATE ASSERTION …

CHECK (SELECT EVERY(…) FROM EXAM_MARK) ;

4. Now suppose that instead of there being a recorded maximum mark of each exam the maximum score
for each question in each exam is recorded in the following relvar:

CREATE TABLE EXAM_QUESTION

(CourseId CID,

Question# INTEGER,

MaxMark INTEGER,

PRIMARY KEY (CourseId, Question#) ;

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

165

Constraints and Updating

For each course, the exam questions are supposed to be numbered sequentially, starting at 1.

a)	 Write an SQL CREATE ASSERTION statement to address this requirement.

b)	 Suppose the questions are subdivided into parts, a, b, c and so on, up to a maximum of six
parts, and maximum marks are given for each part rather than for each question. Again,
the parts for each question must be “numbered” sequentially, starting at a. Write an SQL
CREATE ASSERTION statement to address this requirement.

c)	 Devise shorthands, in the style of SQL, for expressing constraints of the kinds found in your
solutions to a. and b.

5. Using the suppliers-and-parts database shown in Figure 4.13, define SQL integrity constraints to
express the following requirements:

a)	 Every shipment row must have a supplier number matching that of some supplier row.

b)	 Every shipment row must have a part number matching that of some part row.

c)	 All London suppliers must have status 20.

d)	 No two suppliers can be located in the same city.

e)	 At most one supplier can be located in Athens at any one time.

f)	 There must exist at least one London supplier.

g)	 The average supplier status must be at least 10.

h)	 Every London supplier must be capable of supplying part P2.

6. For each example in Exercise 5, list the different kinds of update operation that, if permitted, would
cause the constraint to be violated.

7. A database contains base tables T1 and T2. At all times at least one of these must be empty. The SQL
implementation does not support CREATE ASSERTION but does allow subqueries to appear in table
constraints. How can the stated requirement be implemented?

8. (Repeated from the body of the chapter.) Ponder the distinctions among the following examples.

a)	 SET (X) = (1);
b)	 SET X = 1 ;
c)	 SET (X) = 1
d)	 SET (X) = ((1));
e)	 SET X = (1);

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

166

Constraints and Updating

Which ones assign 1 to X and which assign ROW (1)? Is (b) legal if the declared type of X is ROW
(F1 INTEGER). Is (e) legal if the declared type of X is INTEGER? You might like to try these out
in some SQL implementation.

9. SQL has two ways of starting a transaction, START TRANSACTION for an outermost transaction
and SAVEPOINT for inner ones. Describe any advantages and disadvantages you can think of for this
scheme over one that uses the same method for all transactions.

10. SQL’s UNION, EXCEPT, and INTERSECT operators are the only ones that have a CORRESPONDING
option to specify that columns of two tables are to be paired by their names rather than their ordinal
positions. List as many other operators and syntactic constructs in SQL that you can think of to which
a CORRESPONDING option might usefully be added.

11. Consider the SQL implementation you are most familiar with. To what extent does it correctly support
the standard features mentioned in this book? Is it relationally complete?

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

